Planning a Federal DER Project: Steps in the Process

Distributed Energy Resources for Federal Facilities
Atlanta, GA
May 23, 2001

Joseph Iannucci Principal

Distributed Utility Associates 1062 Concannon Blvd. Livermore, CA, 94550 925-447-0624 joe@dua1.com

Objective

To assist Federal Facility Managers in the selection, installation and operation of Distributed Energy Resources at their sites.

Goals:

- © Become knowledgeable about DER and energy-efficiency technologies.
- Maximize economy and efficiency of facility.
- © Save energy and money.

Seven Steps to Success

- 1. Analyze the facility's electric needs.
- 2. Select candidate DER technologies.
- 3. Screen technologies for feasibility.
- 4. Acquire project and financial resources.
- 5. Develop a project plan.
- 6. Address potential barriers.
- 7. Install and operate the DER.

Step 1: Analyze the Facility's Electric and Other Energy Needs

Current Energy Data:

- Recent bills, fuel costs
- Any "sensitive" or mission critical loads
- Seasonal needs
- CHP opportunities

Step 1: Analyze the Facility's Electric and Other Energy Needs (cont'd.)

DER Applications:

- Standby Power
- Low-Cost Energy
- Stand-Alone Systems
- Combined Heat and Power (CHP)
- Peak Shaving
- Improved Reliability and Power Quality (PQ)
- "Green" Power

Step 2: Select Candidate DER Technologies

Become familiar with DER that may fit your facility's energy needs.

- Diesel and Natural Gas Engines
- Combustion Turbines
- Microturbines
- Fuel Cells
- Photovoltaic (solar) systems
- Wind Turbines
- Storage and Hybrid Systems

DER Applications Matrix

Technology		Application							
		Standby Power	Low-cost Energy	Stand- alone System	Combined Heat & Power	Peak Shaving	Power Quality		
Energy Generation	Diesel Engine	✓	✓	✓	✓	✓			
	Natural Gas Engine	✓	✓	✓	✓	✓			
	Dual Fuel Engine	✓	✓	✓	✓	✓			
	Microturbine	✓		✓	✓	✓			
	Combustion Turbine	✓	✓	✓	✓	✓			
	Fuel Cell		*	✓	✓	✓			
	Photovoltaics		*	✓		✓			
	Wind Turbine		*	✓					
Energy Storage	Uninterruptible Power Supply (UPS)	✓					✓		
	Battery System	✓					✓		
	Flywheel						✓		
	Superconducting Magnetic Energy Storage (SMES)						✓		
	Hybrid Systems	✓	✓	✓	✓	✓	✓		

DER Cost and Performance

Technology	Size Range kW	Installed Cost \$/kW	Heat Rate Btu/kWh	Approx. Efficiency	Variable O&M \$/kWh	Emissions (1) lb/kWh	
	KVV	(2)	Dlu/KVVII	%		NO _x	CO ₂
Diesel Engine	1-10,000	350-800	7,800	45	0.025	0.017	1.7
Natural Gas Engine	1-5,000	450-1,100	9,700	35	0.025	0.0059	0.97
Natural Gas Engine w/CHP (3)	1-5,000	575-1,225	9,700	35	0.027	0.0059	0.97
Dual Fuel Engine	1-10,000	625-1,000	9,200	37	0.023	0.01	1.2
Microturbine	15-75	950-1,700	12,200	28	0.014	0.00049	1.19
Microturbine w/CHP (3)	15-75	1,100-1,850	12,200	28	0.014	0.00049	1.19
Combustion Turbine	300-10,000	550-1,700	11,000	31	0.024	0.0012	1.15
Combustion Turbine w/CHP (3)	300-10,000	700-2,100	11,000	31	0.024	0.0012	1.15
Fuel Cell	100-250	5,500+	6,850	50	0.01-0.05	0.000015	0.85
Photovoltaics	0.01-8	8,000-13,000		N/A	0.002	0.0	0.0
Wind Turbine	0.2-5,000	1,000-3,000		N/A	0.010	0.0	0.0
Battery	1-1,000	1,100-1,300		70	0.010	(4)	(4)
Flywheel	2-1,600	400		70	0.004	(4)	(4)
SMES	750-5,000	600		70	0.020	(4)	(4)
Hybrid Systems	1-10,000	(6)	(5)	(5)	(5)	(5)	(5)

Notes:

- (1) Nationwide utility averages for emissions from generating plants are 0.0035 lb/kWh of NOx and 1.32 lb/kWh of CO2.
- (2) The high end of the range indicates costs with NOx controls for the most sever emissions limits (internal combustion technologies only).
- (3) Although the electric conversion efficiency of the prime mover does not change, CHP signficantly improves the fuel utilization efficiency of a DER system.
- (4) Storage devices have virtually no emissions at the point of use. However, the emissions associated with the production of the stored energy will be those from the generation source.
- (5) Same as generation technology selected.
- (6) Add cost of component technologies.
- ©2002 Distributed Utility Associates

Step 3: Screen the DER Technologies

Rule out those technologies that are not practical or feasible at your site.

- Electrical demand
- Fuel availability and supply
- Physical size limitations
- Air/environmental impacts
- First-cut cost: capital and life-cycle
- Anticipate barriers (see Step 6)

Step 4: Acquire Project Resources

Line up the technical, financial and personal resources that will help you get the job done.

- **Process Experts** check with your DOE Regional Office representative and FEMP DER Program
- **Technical Experts** DOE, FEMP, Nat. Labs, local utilities, ESCOs, consultants & vendors
- **Financial support** Utility Energy Services Contracting, Energy Savings Performance Contracting, utility rebates, state/Federal incentive programs
- **FEMP DER Program** technical and financing assistance, education and outreach

Step 5: Develop a Project Plan

Outline the specific technical, business and financial approach your project needs

- Conduct a **Preliminary Screening**, with guidance from FEMP and DOE Regional Office
- Conduct a Full-Scale Feasibility Study
- Explore **Financing Options**, using the resources described in Step 4.
- Obtain the necessary **Permits**, including air and land use, as required.
- Apply for **Interconnections** with the local utility, including electric and gas, as needed.
- Prepare **RFP** to select qualified contractor.

Step 6: Address Potential Barriers

Identify obstacles and delays to your project and formulate strategies for overcoming them.

- Identify a **point of contact with the utility** and work closely with them throughout the interconnection process.
- Learn from experiences of other DER projects in your area
- See if your DER hardware can qualify as **certified equipment.**
- Find out about **air emissions regulations** and what data and forms are required to be filed.
- Require the **contractor** to handle all permitting, studies, etc. when signing a contract.

Step 7: Install and Operate the DER

- Improved facility operations: reliability, power quality, energy security
- Money saved
- Environmental impacts lessened
- Beneficial impact to the local utility grid

Selected Resources

DOE Federal Energy Management Program (FEMP)

www.eren.doe.gov/femp

DOE Regional Offices

www.eren.doe.gov/femp/aboutfemp/fempcontacts.html.#regional

Building Life-Cycle Cost Tool (BLCC)

www.eren.doe.gov/femp/techassist/softwaretools/softwaretools.html

DOE Software and Analytical Tools

www.eren.doe.gov/buildings/tools_directory/

DOE Office of Distributed Energy and Electric Reliability

www.eren.doe.gov/der

FEMP How-To Guide

Numerous additional sources of information and assistance.